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Detailed observations of the air flow velocity, pressure and Reynolds stresses above 
water waves in a wave flume are presented. The static pressure fluctuations induced 
by the waves are observed following a new procedure that eliminates acoustical 
contamination by the wave maker. The measurements are analysed by comparing 
them with numerical simulations of the air flow over waves. In these numerical 
simulations the sensitivity to the choice of turbulence closure is studied. We considered 
both first-order turbulence closure schemes based on the eddy viscosity concept, and 
a second-order Reynolds stress model. The comparison shows that turbulence closure 
schemes based on the eddy viscosity concept overestimate the modulation of the 
Reynolds stress in a significant part of the vertical domain. When an eddy viscosity 
closure is used, the overestimated modulation of the Reynolds stress gives a significant 
contribution to the wave growth rate. Our results confirm the conclusions Belcher & 
Hunt reached on the basis of the rapid distortion theory. 

The ratio of the wind speed to the phase speed of the paddle wave in the experiment 
varies between 3 and 6. The observed amplitudes of the velocity and pressure 
perturbation are in excellent agreement with the simulations. Comparison of the 
observed phases of the pressure and velocity perturbations shows that the numerical 
model underpredicts the downwind phase shift of the undulating flow. 

The sheltering coefficients for the flow over hills and the growth rates of waves 
that are slow compared to the wind calculated with the Reynolds stress model are 
in excellent agreement with the analytical model of Belcher & Hunt. Extending the 
calculations to fast waves, we find that the energy flux to waves travelling almost as 
fast as the wind is increased on going from the mixing length turbulence closure to 
the Reynolds stress model. 

1. Introduction 
Though the subject has been studied for decades, the mechanisms responsible for 

the growth of ocean waves by wind are still not well understood. Both observations 
in the field (Snyder et al. 1981) and in the laboratory (compiled by Plant 1982) tend 
to show larger growth rates than can be understood with the present models. To 
describe the interaction between the wave-induced motions in the air flow and the 
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turbulence, models of increasing complexity have been used. In the classical theory 
of Miles (1957) this interaction is neglected completely, and turbulence serves only to 
maintain a logarithmic wind profile. Jacobs (1987) and van Duin & Janssen (1992) 
use a mixing length type approach to calculate the modulations of the Reynolds 
stress caused by wave-induced motions. The earliest numerical simulations of the air 
flow over waves, e.g. Gent & Taylor (1976) and Chalikov (1978), used a one-equation 
e-model. Later Al-Zanaidi & Hui (1984) used a more general two-equation closure 
scheme. However, they all took the eddy viscosity concept as their starting point. 

For the related problem of wind over hills, Britter, Hunt & Richards (1981) sug- 
gested that this concept can only be valid in a thin layer adjacent to the surface, which 
was termed the inner region. Outside this layer, in the outer region, the turbulence is 
distorted too rapidly for the eddy viscosity concept to be valid, and the rapid distor- 
tion theory as described by Batchelor & Proudman (1954) should be applied. In his 
numerical calculations Townsend (1972) took into account the finite relaxation time 
of the turbulent eddies. Later this model was refined by Townsend (1980) to account 
for the effects of the rapid distortion mechanism. Hunt, Leibovich & Richards (1988) 
developed a four-layer asymptotic model to describe the changes to the air flow 
passing over hill. Recently this model was extended by Belcher & Hunt (1993) to the 
case of shear flow over slowly moving waves. 

The aim of this paper is to present and analyse detailed observations of the air flow 
velocity, pressure fluctuations and turbulent moments over mechanically generated 
water waves in a wind wave tank. For this a sophisticated experimental set-up has 
been used. Horizontal and vertical air flow velocity components were determined by 
means of a X-wire anemometer. Fluctuations of the static pressure were monitored by 
means of an new type of pressure probe. Pressure measurements in a wind-wave tank 
can get easily contaminated with noise made by the wave maker. This contamination 
was avoided by switching off the wave maker before the data acquisition was started. 

The observations are compared with results of numerical simulations using three 
different closure hypotheses: a mixing length closure, a two-equation e-t. model and 
a second-order Reynolds stress model. The motivation of this study is that very 
few comparisons between models with different turbulence schemes and detailed 
observations of the air flow over water waves have been made. Observations of stress 
profiles over hills have shown that models based on the eddy viscosity hypothesis 
overestimate the shear stress modulation outside the inner region (Belcher, Newley & 
Hunt 1993). This study aims to show that the same is true for flow over water waves. 

Similar experiments done in the past differ in several respects from the experiment 
described here. The first to make detailed observations of the air flow over waves was 
Stewart (1970). As he used relatively short paddle waves (0.41 m) in combination 
with low wind speeds, the wave Reynolds number in his experiment was an order of 
magnitude smaller than is the case in the present experiment. On the basis of the 
model calculations presented by Harris, Belcher & Street (1996) it is to be expected 
that the low Reynolds number will complicate the analysis of the Stewart experiment. 
Later, experiments involving a wave follower were done by Hsu, Hsu & Street (1981) 
and Hsu & Hsu (1983) in the Stanford wind tunnel. A good analysis of these 
experiments can be found in Harris et al. (1996). The Stanford experiments differ 
in several respects from the experiment presented here. The fetch in the IRPHE 
wind tunnel used in the present experiments is 28 m, twice the fetch in the Stanford 
experiment. Due to the relatively short fetch in the Stanford tank, Harris et al. (1996) 
suspected that the turbulence in the outer region was not fully developed. Since 
this is the region where the largest difference between the turbulence schemes can be 
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expected, no strong conclusions regarding the validity of these schemes can be based 
on these experiments. The ratio of the wind speed to the phase speed in the Stanford 
experiments ranged from less than 1 to 2. The failure of the eddy viscosity models is 
expected to be most apparent above waves slow compared to the wind. By using both 
a shorter paddle wave (0.8 m compared to 1.6 m) and larger wind speeds we were able 
to increase the wind speed/phase speed ratio to a value of 6. Another difference is 
that in the Stanford experiments the probes were mounted on a wave-follower, which 
made it possible to make observations close to the surface. The experiments in the 
Stanford wind tunnel and the present experiment can be considered complementary : 
owing to the employment of the wave follower the first experiment gives a good 
picture of the dynamics in the (upper part of the) inner region; owing to the longer 
fetch the present experiment is better suited to study the outer region. 

2. Measurements 
2.1. The experimental set-up in the I R P H E  wave tank 

The experiments were conducted in the large IRPHE Wind Wave Tank? described 
in detail by Favre & Coantic (1974). It consists mainly of a water tank which is 40 
m long, 3 m wide and 1 m deep. Above the water surface a closed loop wind tunnel 
produces an air flow, with wind speeds of up to 16 m s-I. The height of the air 
column is close to 2 m. The experiments are done at a fetch of 28 m. At this fetch 
the wind profile is observed to be logarithmic up to 40 cm above the water surface. 

The experiment consisted of three runs. During each run the mean value of the 
wind velocity in the potential flow above the turbulent boundary layer was kept 
constant at 6.3, 5.4 and 3.5 m s-l, respectively. The paddle waves were generated 
by means of a wave maker at the entrance of the water tank. The wave maker was 
completely submerged, in order not to disturb the air flow. 

The probes were located at a fetch of 28 m. A mechanical device was used to 
put the probes at various heights above the mean surface. The longitudinal and the 
vertical turbulent velocity fluctuations were measured by means of a X-wire, with 
both wires mounted at a 45" angle relative to the mean wind direction. They were 
connected to two DISA model 55 constant-temperature anemometers. The hot wires 
were calibrated before and after the experiments in a small wind tunnel for mean 
velocities ranging from 3 up to 18 m s-l. This large range is necessary because of 
the large fluctuations in wind speed in the turbulent air flow, particularly close to the 
surface. During the calibration a least-square regression law was used to relate the 
output voltages El and E2 of the anemometers to the effective cooling velocities U c f l  
and U,,,, using the Collis and Williams cooling law: 

where i = 1,2 denotes the wires. The effective velocities U,fi, are related to the wind 
speed U by 

u,,, = u (cos2 + K' sin2 Q ~ )  . 
Here K ,  is the cooling factor of wire i, and Ql is the angle between the wind vector 
and the normal to wire i. Since the wires are mounted perpendicular to each other 
@, + @2 = n/2. The coefficient A , ,  B, and n, are determined during the calibration 

Formerly known as the Wind Wave Tank of the Institut de Mecanique Statistique de la 

(2.2) 
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(Resch 1973; Giovanangeli 1980). The systematic error in the velocity observations 
with the X-wires is estimated to be less than 5 x lop3 m s-'. 

The water surface elevations were measured using two capacitance wave gauges 
of 0.3 mm outer diameter with two DISA model capacitance measuring units. The 
typical sensitivity of the wave gauges was determined by raising and lowering the 
probes by known amounts. The two wave gauges were located at the same fetch of 
28 m, separated from each other by 2 cm in the mean wind direction, to make direct 
observations of the wave slope. 

The pressure fluctuations were measured using a new method (Giovanangeli 1988), 
whereby the static pressure is determined from the difference of the observed total 
pressure and the dynamical pressure derived from velocity measurements. The velocity 
measurements were done with the X-wires described above. The total pressure was 
measured using a bleed-type pressure sensor TSI model 1412 J. In this sensor a flow of 
helium gas through a capillary tube is created by connecting one side of the tube to a 
reservoir of helium at constant pressure. The other side of the tube is located inside 
a total pressure sensing head. The flow rate in the capillary tube depends on the 
pressure difference between the total pressure in the sensing head and the constant 
pressure in the reservoir. The flow rate is measured with a hot film sensor located 
near the exit of the capillary tube. The transfer function (gain and phase shift) of the 
pressure probe has been determined in detail in previous studies (e.g. Giovanangeli 
& Chambaud, 1987). It was shown that the pressure probe in combination with the 
method used here allows measurements of the static pressure fluctuations in air flow, 
particularly close to the waves, with an accuracy of 0.05 Pa. 

All the output voltages given by the different probes were amplified and conditioned 
before being stored in a digitized form on a COMPAQ 386 at 150 Hz sampling frequency. 
Low-pass analog linear filters were used prior to digitization. 

The key point of the experiments was to measure the static pressure fluctuations 
in the presence of paddle waves. Other investigators have shown that the driving 
mechanism can induce acoustic pressure fluctuations inside the wave tank (Latif 1974; 
Papadimitrakis, Hsu & Street 1986; Banner 1990). They used different methods to 
correct for these effects on the pressure fluctuations estimates. Our first experiments 
have indeed shown that when the wave maker is running it induces a strong contami- 
nation of the measurements of the amplitude of the static pressure fluctuation. Rather 
than trying to correct for the contamination, we chose to avoid the effect completely 
by turning off the wave maker before the data acquisition starts. Therefore we used 
the following procedure in the experiments presented here. First a continuous wave 
field is generated with the wave maker in the presence of wind. Then the wave paddle 
is suddenly stopped and the data acquisition is started. For about 30 s, corresponding 
to the time required for the end of the wave field to reach the experimental section, 
the pressure above the paddle wave can be observed without any acoustic contami- 
nation. In figure 1 spectra are shown of the elevation, pressure and vertical velocity 
variance, both with the paddle working and while it was switched off during the data 
acquisition. It is obvious that the paddle wave fields generated in the first case and in 
the second one are similar. From the pressure spectrum it is also clear that the noise 
of the wave maker working induces a large error in the measurements of the pressure, 
particularly at the frequency of the paddle motions. The experimental procedure 
we used in these experiments allows observation of the pressure fluctuations above 
paddle waves while avoiding completely the errors induced by the paddle motions. In 
figure 1 the spectra of the vertical velocity variances are also shown. These spectra 
show that the air flow over the waves is not affected by switching off the paddle. To 
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FIGURE 1. Spectra of (a) the elevation, ( b )  pressure and (c) vertical velocity variance for the case 
when the paddle is still working (solid line) and for when it is switched of (dashed line) during the 
data acquisition. The pressure and velocity measurements were done at a height of 5 cm above the 
mean water level, with a 5 m s-' wind speed in the middle of the tunnel. The paddle waves had a 
length of 80 cm, and an average amplitude of 2 cm. 

get times series long enough to obtain good estimates of pressure and wave spectra 
the procedure used here was repeated ten times. 

An estimate of the phase speed c(w) of the paddle waves was made from the phase 
shift o A t  between the two wave gauges: c = A x / A t .  The wave gauges were located 
Ax = 2 cm apart. It was found that the paddle wave can be considered as a free 
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propagating deep-water gravity wave, since the observed phase speed was very close 
to g / w ,  where g is the gravitational acceleration. 

2.2. Averaging and decomposition 
Let qi,i = l,.., N ,  represent one series of observations of a certain quantity at a given 
height. In the present experiment, this quantity can be a velocity component or the 
pressure. As described above, after every 30 s of observations the data acquisition 
is stopped and the wave maker is started to generate new paddle waves. After 
switching off the wave maker the data acquisition is continued. For every series this 
procedure was repeated ten times. With a sampling rate of 150 Hz it follows that 
one series consists of 45000 individual observations. Simultaneously with the velocity 
and pressure, the water elevation r]  was measured. The upward zero crossings in q i  
are used to mark the border between two consecutive waves. Each individual wave 
is then divided into Nb bins. After sampling all data in these bins, we get a set 
q j k ,  j = 1, .., Nb, k = 1, .., N j ,  where N j  is the number of observations that fall into bin 
j .  Following Hsu et al. (1981) we now define two averaging procedures. The phase or 
ensemble average of property q is given by 

The average over a wave period, or simply the mean, is given by 
. Nh 

The deviations of an individual observation from its phase average is called the 
fluctuating part: qik = q j k  - qj.  As these fluctuations are mainly caused by turbulence 
(Hsu et al., 1981), the phase average (2.3) can be regarded as an ensemble average. 
Therefore we will use the same symbol for the phase averaging procedure defined 
above and the Reynolds average. The wave-induced part of quantity q is defined as the 
deviation of the phase average from the mean: i j j  = q j  - ( 4 ) .  Three Reynolds stress 
components can be found from the observations by applying the phase average (2.3) 
to the products (U'u')jk, ( u ' w ' ) ~ ~  and (w'w')~~. .  In this paper we will refer to UIU' and w" 
as the horizontal and vertical velocity variance, respectively. The cross-correlation is 
used to define the (turbulent) stress: z = -yam. 

To simplify the analysis we will often look at the amplitude of the first harmonic 
of the wave-induced part. Therefore we define the complex amplitude Q such that 

i j  J . = I 2 q  [Aei(2"j/Nb+'h) + c.c.1 + harmonics. (2.5) 
The phase $, is chosen in such a way that the amplitude of the elevation 4 is real. 
This greatly simplifies the interpretation of the other (complex) amplitudes : the real 
part Re[Q] gives the amplitude of ij in phase with the elevation, and the imaginary 
part Im[Q] the amplitude 90" degrees out-of-phase with the elevation. A positive 
value of Im[Q] corresponds to an enhancement of q above the windward slope of the 
wave. 

There are two possible sources of errors in the averaged observations. The first 
is due to random errors that have not averaged out due to the finite length of the 
observation series, the second is caused by systematic errors of the probe. Based 
on the calibration, we believe that the systematic error is less than 0.005 m ssl for 
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the hot wires, and less than 0.1 Pa for the pressure probe. The uncertainty in the 
Reynolds stress components due to the systematic error in the hot wire is estimated 
as 4AUu,, where AU is the systematic error of the hot wire. The friction velocity 
u* is used as a measure of the turbulent fluctuations in the velocity observations. 
From (2.5) follows that the error in the components of the amplitude 4 is $ of the 
error in the mean. In the figures presented in this paper, the error bars indicate the 
maximum of the random error and the estimated systematic error. For the amplitudes 
of the horizontal and vertical velocity components the contribution of the random 
error dominates; for the Reynolds stresses and the pressure amplitudes the limited 
accuracy of the probes determines the accuracy. 

3. The numerical model 

the Reynolds-averaged Navier--Stokes equations for an incompressible fluid : 
The velocity and pressure distribution of the air flow over waves is governed by 

dui  
- = 0. axj 

Here the overbar denotes an ensemble average, U , ,  i = 1,2,3, are the Reynolds- 
averaged velocity components of the air flow, t is time, xl,  i = 1,2,3, are the spatial 
coordinates, pa is the density of air, p is the Reynolds-averaged pressure and q, 
i, j = 1,2,3, are correlations that give rise to Reynolds stresses. (Throughout the 
article repeated indices imply a summation, and two equivalent notations for both 
the spatial coordinates (x, y ,  z )  = (x,, x2, xj) and velocities (u,  v ,  w )  = (ul ,  u2, u3) are 
used.) The air is assumed to be flowing over a second-order Stokes wave propagating 
along the x-axis : 

q(x, t )  = a cos(kx - ot) + i ka2(  1 + cos(2kx - 2ot)), (3.3) 

where q(x, t )  is the elevation, a is the amplitude of the wave, k is the wavenumber and 
o is the angular frequency. The orbital velocities uo, of this wave are used as lower 
boundary conditions at z = q(x,t) for the air flow. At the top of the domain z = h 
we prescribe a constant horizontal wind speed Uh, and we set the vertical velocity to 
zero. 

Since none of the boundary conditions depends on the y-coordinate, neither will 
the solution. So the numerical model needs to take into account only two spatial 
coordinates: x and z .  All derivatives with respect to y appearing in (3.1) and (3.2) can 
be ignored. In the present study we only consider waves going in the same direction 
as the wind, which means that the equation for v can be eliminated. 

3.1. The turbulence closure schemes 
Before the four equations (3.1) and (3.2) can be solved for zij  and p, expressions 
for the Reynolds stress terms have to be supplied. In the model described here, 
three different closure schemes are used. Two of these, the mixing length and the 
e-c schemes, are based on the concept of eddy viscosity. In the third, dynamical 
equations for the second-order correlations are solved, using parameterizations 
for third-order correlations that appear in these equations. 
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3.1.1. Mixing length 
In analogy with the molecular viscosity, the eddy viscosity is introduced by assuming 

that the traceless part of the Reynolds stress tensor - p a q  is proportional to the 
rate of strain tensor. The resulting relation is known as the closure hypothesis of 
Boussinesq : 

where K is the eddy viscosity and e is the turbulent kinetic energy: 
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-n+ ' J  ;eJij = 2KS.. 1J 7 (3.4) 

(3.5) 1 - 7 7  e = -u.u. 2 I 1' 

The symmetrical rate of strain tensor Sij  is defined as 

In the simplest of the three turbulence schemes we consider, the eddy viscosity K is 
itself also a function of the local rate of strain, and of the height z above the surface: 

K = ( ~ ~ ) ~ ( 2 S i j S i j ) ~ ' ~ ,  (3.7) 
where 1c N 0.41 is the von Karman constant. The closure hypothesis (3.4) in com- 
bination with (3.7) is called the mixing length scheme. Note that this turbulence 
parameterization does not allow the calculation of the turbulent kinetic energy e. By 
redefining pressure as p + 2e/3 the turbulent kinetic energy is eliminated from the 
equations, and the resulting set of equations is closed. 

3.1.2. The e-e model 
This scheme also uses the Boussinesq closure hypothesis (3.4), but differs in the 

parameterization of the eddy viscosity K .  Unlike in the mixing length model, the 
eddy viscosity is now a function of the turbulent kinetic energy e and the dissipation 
rate E. (hence the name e-e model): 

e2 
K = c ~ - ,  

e 
where cfl is a dimensionless constant. The turbulent kinetic energy e and the dissipation 
rate E are calculated dynamically: 

where P is the production of turbulent kinetic energy: 

and the turbulent fluxes are parameterized as 

(3.10) 

(3.11)  

(3.12) 

(3.13) 
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In this study we use the standard values for the five dimensionless constants in the 
e-e model (Jones & Launder 1972): cle = 1.44, cle = 1.92, cI1 = 0.073, oC = 1.0 and 
ge = 1.3. 

3.1.3. The second-order model 
In a second-order model the dynamical equations for the second-order correlations 

are solved. Like the Reynolds equations, the equations for the second-order correla- 
tions follow from the Navier-Stokes equations combined with a (Reynolds) averaging 
procedure. This set of equations will contain third-order correlations, which need 
to be expressed in known quantities in order to get a closed set of equations. In 
this work we use the parameterization introduced by Launder, Reece & Rodi (1975), 
hence we refer this scheme as the LRR second-order scheme. The balance equations 
for the six independent correlations @ read 

(3.14) 

where the right-hand-side terms represent the production, the turbulent diffusion, the 
work of pressure-velocity correlations and the molecular dissipation. In the Appendix 
the expressions used for the right-hand-side terms are given. 

3.2. Discretization and solution technique 
To simplify the solution of the equations, the coordinates (x, z )  are expressed in terms 
of (x,<), where x = (kx - wt)/271 and 5 = ( z  - y ) / ( h  - y ) .  The domain is now 
0 ,< x, < ,< 1. The velocities and stresses are not transformed. In the new coordinate 
system the surface is stationary and since we impose a constant wind velocity at 
the top, the solution of the equations will also be stationary. In Makin (1979) 
and Burgers & Makin (1993) the governing equations are given in the transformed 
coordinate system (x, 5). 

The resolution close to the surface is increased by discretizing the vertical coordinate 
as 

(3.15) 

where y is the vertical stretching parameter and m is the number of layers in the 
vertical. Starting from the surface ( j  = 0), the spacing between the vertical layers 
increases by a factor y per layer. The lowest model layer has to be within the 
so-called inner surface layer (ISL) (Belcher & Hunt 1993). In this layer, located within 
the inner region, the wave-induced stresses are no longer height dependent. In figure 
2 an overview is given of the vertical structure of the flow as a function of Un/C. The 
depth 6 of the ISL depends on the depth 1 of the inner region: 6 N ( l ~ ~ ) l / ~ ,  where 
the depth of the IR is given by the implicit relation kl = 21cu,/JUl - cI, where Ul is 
the mean wind speed at the top of the inner region 1 (see also the discussion below 
(4.5)). The smaller kzo, the lower the first model layer has to be located. This can 
be achieved by increasing the stretching parameter y or by increasing the number of 
layers in the vertical. Both options give rise to an increase in computation time. For 
kzo = the vertical domain of the numerical model spans roughly three orders of 
magnitude: from the top of the ISL at k z  N 4 x lop2 to kz = 271. For dimensionless 
roughnesses smaller than lop5 the computation time becomes impractically long. To 
simulate the air flow over a wave with roughness kzo = typically 80 layers in 
the vertical are used, with a 6% increase in spacing per vertical layer ( y  = 1.06). The 
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FIGURE 2. Overview of the vertical structure of the flow over waves as a function of U J C .  The 
dimensionless surface roughness is kept constant at kzo = The solid line indicates the depth 
kl of the inner region. The depth k6 of the inner surface layer (ISL) is shown as a dashed line. The 
remaining part of the inner region is called the shear stress layer (SSL). 

lowest layer is then located at k z  = 3 x roughly at the top of the ISL. A further 
increase of the resolution does not change the results. 

The grid is staggered: the pressure and the stresses are calculated at half grid 
points, centred between four velocity points. 

The model uses a standard finite difference scheme, with second-order accuracy in 
both space and time. The difference with results from a time step with first-order 
accuracy is used to estimate the optimal size of the next time step. The elliptical 
equation for pressure is solved with the successive over-relaxation (SOR) method 
using Chebyshev acceleration. 

3.3. The boundary conditions 
At the air-sea interface the orbital velocities U O ,  wo and the surface roughness 
distribution zg(x) is given. Surface values for the e and the second-order moments 
are calculated from the tangential stress at the surface using their equilibrium values. 
The bottom boundary condition for the €-equation is provided by putting the vertical 
gradient to its equilibrium value : 

(3.16) 

The tangential stress at the surface is calculated from the velocity, assuming the 
tangential velocity profile is logarithmic with height between the surface and the 
first model layer. This assumption is also used to calculate the tangential velocity 
gradients, since the standard finite difference formula is inaccurate owing to the large 
velocity gradient between the surface and the first model level. 

We impose periodic boundary conditions in the x-direction. The height h of the 
domain is set equal to the length of the wave A = 2 n / k .  At this height the wave- 
induced properties are small enough to be ignored. The velocities at the top of the 
domain are prescribed: the horizontal z i i  forces the flow, and the vertical velocity wi 
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is set to zero. The upper boundary conditions for e and the turbulent moments are 
found by setting their vertical gradients to zero at the top. The vertical gradient of 
the dissipation E is assumed to be inversely proportional to the height squared. 

The water wave is assumed to be a gravity wave in deep water, for which the 
dispersion relation o2 = g k  is valid, where g is the gravitational acceleration. The 
system is completely determined by specifying the following parameters : the wind 
speed U ,  at height 2, the wavenumber k ,  the amplitude a, the surface roughness zo 
and the gravitational acceleration g. If we replace g by the phase speed c = ( g / k ) ' / 2 ,  
we find that the system is determined by the three dimensionless variables Ui /c ,  ak,  
and kzo. When we want to calculate the growth rate of the wave (see below), the 
ratio of the density of air and water p a / p w  enters as a proportionality factor. We 
conclude that in the numerical model presented here, the growth rate is a function 
of four dimensionless parameters. One of these dependencies, on the density ratio, is 
trivial since it factorizes. 

4, Effects of turbulence closure on wave growth 
The choice of the turbulence scheme has a large impact on the results for the energy 

flux from wind to waves. Not only does the growth rate change quantitatively, but 
also its dependence on the parameters mentioned above changes. Before discussing 
these changes and their cause, first the numerical model is validated by comparing 
results for air flow over hills, which is closely related to the subject of this paper. 

4.1. Validation of the model 
To validate the model the drag caused by a periodic sinusoidal hill is calculated, and 
compared with results from calculations presented in Belcher et al. The boundary 
conditions for a hill can be obtained by putting o = 0 in ( 3 . 3 ) ,  and by putting the 
orbital velocities to zero. We will compare calculations of the dimensionless form 
drag S, defined as 

where qx = dq/i?x. The dimensionless form drag for flow over hills is the equivalent of 
the growth rate parameter in the case of waves. In figure 3 the sheltering coefficient is 
presented as a function of kzo. Results from all three turbulence parameterizations are 
compared, both with other numerical models and with analytical calculations. The 
agreement between the results from the numerical model presented here and the other 
numerical models is excellent. The analytical results for the mixing length closure are 
obtained with the van Duin & Janssen model, modified to include also the effect of 
the wave-induced stress in the inner region (see discussion in Belcher, Harris & Street 
1994, and in Wood & Mason, 1993). The analytical model of Belcher et al. (1993) 
should be comparable with results from the second-order closure schemes, since both 
take into account that the turbulence in the outer region is distorted rapidly. As 
can be seen in figure 3 ,  this is indeed the case for small roughnesses. For larger 
roughnesses, kzo > lop3, the analytical model yields larger sheltering coefficients than 
both numerical models. In the analytical approach of Belcher & Hunt (1993), the 
solution of the equations is found under the assumption that the inner region is thin. 
As will be shown below, see equation (4.7), the depth of the inner region increases with 
the dimensionless roughness kzo. For kzo > lop3 the breakdown of the assumption 
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FIGURE 3. The form drag of a hill S as a function of the surface roughness kzo. The lines indicate 
results obtained with the numerical model used in this paper: solid line, LRR turbulence scheme; 
dashed line, e-e scheme; dashed-dotted line, mixing length scheme. The symbols indicate form drags 
calculated with different models: dots, analytical model of Belcher et a/. (1993); astrisks, numerical 
model of Belcher et al. (1993) with LRR turbulence model; solid squares, undamped e-e model of 
Harris et a/. (1995); open diamonds, analytical model of van Duin and Janssen (1993) modified by 
Belcher et a/. (1994) using a mixing length closure. 

that the inner region is thin becomes a major source of error in the analytical theory. 

4.2. The energyflux to waves 
The energy flux due to surface stresses to a wave with energy E per unit area is given 
by : 

(4.2) 
where the average ( )z=q is performed along the surface of the wave q ,  which cor- 
responds to < = 0 (see also the discussion below equation (5.2)). Transforming the 
normal and tangential stresses and velocities to the Cartesian frame of reference used 
in the model yields 

Ewind = (z Iu l )z=q + (z/lull)z=q, 

(i) (ii) (iii) 

(4.3) 
Following Belcher & Hunt (1993) the energy flux is separated into three parts, where 
for the different parts the work is done by (i) the pressure, (ii) the velocity variances or 
(iii) the shear stress. The relative contributions of these three terms is discussed below. 
The growth rate due to the wind is defined as y = (l/E)k,,,ind. The energy of a gravity 
wave is taken to be E = pwg(q2). Following Miles (1957) and Townsend (1972), 
growth rates will be presented in terms of the parameter p, defined as 
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CIU,  

FIGURE 4. The growth rate parameter f l  us. the ratio c /u ,  calculated with the numerical model 
using three different closures: dash-dot, mixing length; dashed, the e-E scheme; solid line, the LRR 
model. The dimensionless roughness kzo = 

Based on a compilation of experimental data from various sources, Plant (1982) 
concluded that for waves slow compared to the wind p = 32 & 16. 

The growth rate calculated with the numerical model depends strongly on the type 
of turbulence closure used. In figure 4 the growth rate parameter p is shown as a 
function of the ratio c /u ,  for waves with a dimensionless roughness of kzo = lop4. 
For waves slow compared to the wind ( c /u ,  < 13, or equivalently U J c  > 2) the 
mixing length scheme yields much larger growth rates than the LRR model. The 
decay rate for waves going faster than the wind ( c / u ,  > 22, U J c  < 1.2) is also 
reduced in the Reynolds stress model. However, for waves just slower than the wind 
(1.4 < Uj./c < 2) the growth rate is enhanced in the Reynolds stress model. In 
all three regimes the growth rate calculated with the e-6 scheme is located between 
the results from the mixing length model and the Reynolds stress model. Note that 
for slow waves p calculated with the Reynolds stress model is almost independent 
of the ratio c / u , ,  consistent with the experimental data presented by Plant (1982). 
The same result is reported by Townsend (1972) and Belcher & Hunt (1993). How- 
ever, all these models underestimate the value proposed by Plant by a factor more 
than 2. 

In table 1 the relative contributions of the parts (i) to (iii) denoted in equation (4.3) 
are listed for a slow moving wave U i / c  = 5,  a fast moving wave ( U J c  = 1.5) and a 
wave propagating faster than the wind ( U i / c  = 0.80). For slow waves, Ui,/c > 2.7, all 
contributions to the energy flux are positive, and the contribution from the pressure 
is dominant. When the ratio U,/c drops below this value, the work of the tangential 
stress on the orbital velocities, contribution (iii), becomes negative. Owing to the work 
of the pressure the total energy flux to the waves remains positive as long as U i / c  > 1. 
When the ratio U i / c  drops below 1, the contribution due to the pressure perturbation 
is no longer dominant. The negative energy flux for these waves is maintained mainly 
by the work of the shear stress on the orbital velocities (contribution (iii)). 
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Uj./c c/u,  p (i) (ii) (iii) 

5.0 5.3 14.5 78% 10% 12% 
1.5 18.0 21.7 104% 5% -8% 
0.8 33.0 -5.6 11% 7% 82% 

TABLE 1. Contributions to the energy flux using the LRR model. The dimensionless roughness 
kzo = 10-4. 

4.3. Turbulence in the outer region 
The reason for the large differences in growth rate between the three turbulence 
closure schemes can be understood with a physical scaling argument regarding the 
response of turbulence to a rapidly changing forcing. This scaling argument is 
discussed at length in Belcher et al. (1993). An eddy advected over a wave experiences 
changes in velocity shear at a timescale that is proportional to the time it takes the 
eddy to pass over a wave: 

The timescale on which the eddy can adjust itself to changes in the shear is believed 
to be proportional to the eddy turnover time, which is equal to the ratio of the typical 
size of the eddy to the friction velocity. The typical size of eddies in a boundary layer 
is KZ, so it follows that the timescale of eddie adjustment to a change in the forcing 
is proportional to the height above the surface : 

K Z  

U* 
TL -. 

For waves with a phase speed smaller than the wind speed, the vertical domain is 
now divided into two regions: the inner region, where TL < TD, and the outer region, 
where TL > To. An estimate of the depth of the inner region can be found from 
(4.5) and (4.6) by putting TL - TO. For historical reasons (Jackson & Hunt, 1975) 
the O( 1) proportionality constant is chosen such that 

In the inner region, z < 1, the turbulence is in local equilibrium with the velocity 
shear. At each point the production of turbulent kinetic energy is balanced by 
the dissipation. It follows that an eddy viscosity closure scheme of the type (3.4) 
can be used to model the stress in this region. In the outer region, z > 1, the 
eddies are distorted more rapidly than they can react, and they will not be in local 
equilibrium with the shear. Turbulent kinetic energy will be advected away from 
regions with excess production, before a local balance with the dissipation can be 
reached. The eddy viscosity hypothesis, which implies local equilibrium, no longer 
holds. A second-order Reynolds stress model, like the LRR scheme, incorporates 
advection of turbulent moments. Therefore it is expected that this turbulence scheme 
should be able to cope with this aspect of rapidly distorted turbulence. 

The modification of the turbulence in the outer region is described by rapid 
distortion theory (Batchelor & Proudman et al. 1954). In Britter et al. (1981), 
Zeman & Jensen (1987) and Belcher et al. (1993) detailed descriptions of the effects 
of rapid distortion on turbulence in the outer region can be found. Their conclusions 
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are that, owing to the irrotational straining of the initially anisotropic turbulence, 
the horizontal velocity variance u" is reduced above the crest. The effect on w" 
depends on the anisotropy __ A = u'u'/w'w' of the mean flow: if A < 3 the vertical 
velocity variance w'w' is reduced owing to the irrotational strain effect, for A > 3 
the effect reverses sign. The curvature of the mean streamlines in the outer region 
rotates the stress tensor. Zeman & Jensen (1987) find that this effect is important 
at the top of the inner region. A part of the observed reduction of the shear 
stress above the top of the Askervein hill could be attributed to the curvature 
effect. The ability of second-order models like the LRR scheme to reproduce rapid 
distortion effects depends on the parameterization of the rapid term 17(2). Though 
the LRR model gives the right sign and order of magnitude of both rapid effects, 
alternatives to the LRR parameterization exist, and they may yield different results. 
A comparison of such parameterizations with direct numerical simulations can be 
found in Shih & Lumley (1993). 

~~ 

4.4. The relation between growth rate and turbulence model 
As can be seen in figure 4, the growth rate for slow waves calculated with the mixing 
length scheme is significantly larger than the one following from the LRR closure, 
with the growth rate from the e-6 scheme in between. As shown in detail in Belcher 
et al. (1993), this is a direct consequence of the difference in handling the rapidly 
distorted turbulence in the outer region. Since the link between turbulence models and 
growth rates is a central issue of this paper, their analysis will be briefly recaptured 
here. 

In Belcher et al. (1993) it is shown that in the upper layer of the outer region the 
wave-induced flow is potential. In the lower part of the outer region the wave-induced 
flow is also inviscid, but rotational. The upper layer starts at the height h,: 

(Belcher and Hunt, 1993) where Unl is the mean windspeed at level h,. It follows that 
the velocity perturbations in this layer can be written as: 

(4.9) 
(4.10) 

Here u, is the complex amplitude of the wave-induced velocities at the bottom of the 
upper layer. For the eddy viscosity closures the Reynolds stress perturbation follows 
from the Boussinesq hypothesis: 

?/pa = 2R (SXZ) + 2(K)SYZ. (4.1 1) 

If the velocity perturbations (4.9) and (4.10) are substituted in the equations (3.6) and 
(3.7) that enter (4.11), an expression for the stress perturbation t in terms of u, can be 
found when the mixing length scheme is used. The mixing length scheme gives a stress 
perturbation that is 180" out-of-phase with the velocity perturbations. To calculate 
the impact of the stress perturbation on the out-of-phase pressure component, the 
linearized vertical momentum equation has to be integrated from infinity down to h, : 

Im@,] = pa /""(Uz - c)Re[G]kdz - Re[?]kdz. (4.12) 

The first term on the right-hand side represents the contribution to the growth of 
1; 
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an undulating flow that is shifted in phase with respect to the wave. In terms of 
the potential flow approximation (4.9) and (4.10) this contribution is proportional 
to the imaginary part of the wave-induced velocity perturbation at the bottom of 
the upper layer. Due to the second term on the right-hand side of equation (4.12) 
the wave-induced Reynolds stress 7 has a direct impact on the wave growth. The 
Reynolds stress perturbation in the upper layer calculated with the mixing length 
scheme will contribute 

(4.13) 

where E = u./rcU, is believed to be small. The total growth rate will include 
contributions of the stress modulation in the inner region and the rest of the outer 
region, and from the term involving Re[$] in equation (4.12). 

In the LRR model, the velocity perturbations (4.9) and (4.10) modulate the produc- 
tion terms. In the outer region the advection terms will balance this modulation. This 
results in a modulation of the shear stress that is reduced by a factor E compared to 
the mixing length result. The contribution to the growth rate of the stress modulation 
in the LRR model is 

(4.14) 

Even if Im[u,] = Re[u,], meaning that the undulating flow in the outer region is 45" 
out-of-phase with the wave, the contribution of equation (4.14) is smaller than (4.13) 
by a factor of E .  

In the mixing length model, both terms in equation (4.11) contribute equally to 
the stress modulation. In the e-e scheme, where the eddy viscosity K is calculated 
from the dynamical variables e and E ,  the modulation of the eddy viscosity will be 
suppressed. This leaves only the second term in equation (4.11) to modulate the 
stress. It follows that the contribution to the wave growth of stress contributions in 
the outer region in the e-e scheme will be half that of the mixing length scheme. 

5. Comparison of the observations with model results 
5.1. Procedure 

The parameters for the three sets of observations are listed in table 2. To simulate 
these experiments with the numerical model, four quantities need to be specified: the 
wavelength 2, the amplitude a, the wind speed Ui and the surface roughness ZO. The 
first two are easily obtained from the observations. The surface roughness zo and the 
wind speed Ui are determined by fitting a logarithmic profile through the observed 
mean wind speeds using a least-squares method. 

The observations are performed at a fixed height above the mean water level. 
Necessarily the average () over a wavelength for the observations has to be performed 
for constant z .  In the numerical model the (Cartesian) velocities, pressure, stresses 
and variances are calculated on the wave-following  grid. To comply with the 
procedure followed with the observations, the results are transformed to the (x, z ) -  
frame (using linear interpolation between the grid points) before they are decomposed 
into mean and wave-induced parts. From the wave-induced properties a complex 
amplitude of the first harmonic is determined with the help of (2.5). 

The velocities in the plots are normalized with the wind speed in the middle of the 
wave flume U,, velocity variances with u? and the stress z and the pressure p with 
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FIGURE 5. Profiles of mean turbulent stress components for run 35: the mean stress (T), ( b )  the 
horizontal velocity variance and (c) the vertical velocity variance. Model results with different 
turbulence closures are also shown: dash-dotted line, mixing length; dashed line, e-e; solid line, 
LRR turbulence scheme. 

Run U ,  U* i ak Nh U J c  c /u ,  kzo kl 
(m s-') (m S K ' )  (m) 

35 6.3 0.26 0.80 0.18 7 5.3 4.3 5.5 x lop4 0.10 
BA 5.4 0.21 0.80 0.15 9 4.6 5.3 2.9 x loK4 0.09 
B2 3.5 0.15 0.92 0.09 5 2.8 8.0 6.5 x 0.27 

TABLE 2. Parameters for the three sets of observations. The friction velocity u* is determined from 
the mean velocity profile. N,, is the number of heights a t  which observations were made. In the last 
column the dimensionless depth kl of the inner region is given. 

p,u?. The wind speed U ,  and the friction velocity u, can be found in table 2, for the 
density of the air pa the value 1.3 kg mP3 is used. Additionally, (amplitudes of) wave 
induced quantities are normalized with the steepness of the paddle wave ak, which is 
also listed in table 2. 

5.2. Comparison 
The friction velocity derived from the mean velocity profile is in good agreement 
with the observed stress (T) = - p u ( m ) .  This can be seen in figure 5,  where profiles 
of the horizontal velocity, stress and velocity variances for run 35 are shown. The 
stress values, normalized with the friction velocity obtained from the velocity profile, 
are scattered around unity. In all sets, the stress is decaying with height, which is 
a consequence of the horizontal pressure gradient that is forcing the wind in the 
wave flume. The mean variance of the observed horizontal velocity (u") also decays 
with height, but the variance of the vertical velocity is constant with height. The 
anisotropy in the velocity variances is reasonably reproduced by the LRR model, 
though the horizontal velocity variance (n) close to the surface is underestimated. 
The e-e scheme, which gives (a) 2 (w") 2: 2e/3, overestimates the vertical velocity 
variance by a factor 2 compared to the observations. Since the mixing length scheme 
does not provide the turbulent kinetic energy e, the horizontal and vertical velocity 
variances cannot be calculated with this scheme. 
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Figures 6 and 7 show a comparison between the observed and modelled wave- 
induced pressure and velocities at a constant height. For sets 35 and BA (the latter 
is not shown) the prescribed Stokes wave is in good agreement with the observed 
phase-averaged elevations, except near the crests where the wave seems to be pushed 
forward relative to the Stokes profile (solid line). For the set with the longest 
wave and the smallest amplitude, B2, the wave shape is slightly distorted. The 
departure of the pressure and velocity perturbations from a sinusoidal shape is well 
captured by the numerical simulation. To find out whether the Stokes profile (3 .3)  
or the nonlinearity of the equations of motion of the air are responsible for the 
asymmetrical perturbations, two additional calculations were performed. In the first, 
a sinusoidal wave of the same steepness as the laboratory wave is used as a bottom 
boundary condition (dashed lines in figure 6); in the second calculation the steepness 
is reduced by a factor 10 (dash-dotted lines). From the figures we can conclude 
that the Stokes profile is responsible for an extra speed-up over the crest, which is 
associated with an extra-deep minimum in the pressure perturbation. The nonlinearity 
of the equations manifests itself mainly by reducing the deceleration of the flow in 
the trough, limiting the maximum of the pressure perturbation. Both effects seem to 
be of equal importance to the asymmetry of the vertical velocity perturbation. 

The observations of the pressure and velocities in the set with the lowest wind 
speed, B2, show much more scatter than in the other two sets. This may be explained 
by the fact that the wave-induced velocities, which scale with akU,, are approximately 
4 times smaller for this set, since both the steepness ak and the wind speed U,  are 
a factor 2 smaller. This reduces the signal to noise ratio also by a factor 4, which is 
reflected by the relatively large error bars in figure 7. The wave-induced pressure and 
velocity correlations are even a factor 8 smaller for this set, since they scale with aku?. 

The phase shifts in the pressure observed in runs 35 and BA imply that the bulk of 
the momentum passes along the surface via the paddle waves. If we assume that most 
of the work on the wave is done by the out-of-phase component of the pressure, the 
fraction of the momentum flux supported by the paddle wave is (Townsend 1972): 

Extrapolating the observed amplitudes of the out-of-phase component of the pressure 
to the surface we find that for run 35 the paddle wave is responsible for 80% of the 
momentum flux, and for 55% in the case of run BA. If such large fractions of the 
downward momentum flux are supported by organized wave-induced motions, the 
turbulent momentum flux close to the surface must be significantly reduced. As the 
growth rate of slow waves is coupled to the surface stress (Plant 1982), this means 
that paddle waves are able to suppress the growth of wind ripples in wind-wave tanks. 
The fact that the presence of paddle waves seems to reduce the level of wind ripples 
has been observed both in the IRPHE wind tunnel, and in others (e.g. Donelan, 
1987). 

The profiles of the amplitudes of the wave-induced velocities, see figure 8, show 
that the numerical model reproduces well the real part of the horizontal amplitude 
Re[G] and the imaginary part of the vertical velocity Im[$]. This is the part of 
the undulating flow in phase with the wave. Owing to the work of stresses close 
to the surface the phase of the undulating flow is shifted downwind, giving rise to 
non-zero values for Im[G] and Re[$]. The numerical simulations show a smaller shift 
downwind of the undulating flow than the observations. This picture is consistent 
with the observations of the pressure perturbations. The real part of the amplitude 
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FIGURE 6. ( a )  Phase-averaged elevation, ( b )  pressure, (c) the horizontal and (d) the vertical velocity 
components for run 35 ( U ,  /c = 5.3). The pressure and velocity are measured at  a height kz = 0.46. 
Results with the LRR are also shown: dash-dotted line, reduced amplitude (ak = 0.018); dashed 
line, sinusoidal wave (uk = 0.18); solid line, Stokes wave (uk = 0.18) 

of the pressure variation Rev]  is slightly overestimated in the numerical simulations. 
However, the imaginary part of the pressure amplitude is underestimated by a factor 
2 to 4, depending on the closure scheme. So both the velocity and the pressure 
observations indicate that the numerical model reproduces reasonably the in-phase 
part of the undulating flow, but it underestimates the out-of-phase part. 

The differences between the three closure schemes used in the numerical model are 
most apparent in the amplitudes of the Reynolds stress variations (figures 9 and 10). 
As expected on the basis of the physical scaling argument given above, the mixing 
length model overestimates the real part of the stress amplitude. In the LRR closure 
the amplitude in this part of the vertical domain is reduced by more than an order 
of magnitude. For all three runs, the observations show an equally small amplitude. 
The amplitudes obtained with the e-e scheme, roughly one third of the mixing length 
amplitudes, are still significantly larger than the observed values. 

The imaginary parts of the amplitudes of the velocity variances UIU' and w" 
calculated with the LRR scheme show a better agreement with the observations than 
the results obtained with the e-c scheme. As the observed anisotropy A is smaller 
than 3, rapid distortion theory implies that the irrotational straining of anisotropic 
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e-e model, the LRR scheme is doing just that. The uncertainties in the observed - 
variances obscure this effect, except perhaps in the lowest observations of Re [w'w'] 
in run BA, where a significant increase is observed that is not present in the model 
calculations. 

Far from the surface the vertical momentum flux is maintained by the Reynolds 
stress Z~ = --p,u" Close to the surface correlations of the more organized wave- 
induced motions also contribute to the momentum flux. In Cartesian coordinates 
this flux is equal to zw = -p,(E%), where the averaging is performed for constant 
z .  Since this flux is not defined for heights smaller than the amplitude of the wave, 
it is convenient to define a flux going through a plane that follows the undulations 
of the surface. One option is to transform the x-momentum balance equation to the 
wave-following (x, <)-coordinate system, and to perform the averaging ()[ keeping 5 
rather than z constant. This leads to 
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FIGURL 8. Profiles of the wave-induced amplitudes of the horizontal velocity, vertical velocity and 
pressure for run 35 (U, /c  = 5.3). Model results with different turbulence closures are drawn: 
dash-dotted line, mixing length; dashed line, e-c; solid line, LRR turbulence scheme. 

where 
w = w - (1 - [ ) ( U  - c)y*. (5 .3)  

Since we assume the flow is stationary, the temporal derivative on the left-hand side of 
(5.2) is zero. Consequently the sum of the terms between the brackets is independent 
of height, though each term individually may depend on height. The second and third 
term between the brackets together represent the wave stress z,. The former is zero 
at the surface i; = 0 owing to the boundary condition W = 0 at the surface. Since 
the latter contribution arises purely because we average over an undulating surface, 
it will be zero at the top of the domain 4 :  when for the averaging at the top < is kept 
constant, the height z is also constant. In other words: when the wave stress through 
an undulating surface is calculated, correlations between the pressure (and velocity 
variances) and the slope of this surface will arise. 

In figure 11 calculated and observed profiles of the wave stress are shown for run 
BA. The mixing length closure (dash-dotted line) gives rise to a wave stress that decays 
exponentially from its surface value to zero with height. The decay is slightly faster 
than exp(-2kz), which is shown as a dotted line. In the LRR scheme the wave stress 
decays from its surface value to zero at the top of the inner region (kz  = 0.09). At 
the bottom of the outer region the wave stress shows an overshoot and reverses sign 
to become negative. Townsend (1972) found a similar behaviour from his numerical 
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FIGURE 9. Profiles of the wave-induced amplitudes of the stress, and the horizontal and vertical 
velocity variance for run 35 (Vn/c = 5.3). Lines indicate model calculations with different turbulence 
models (see figure 8). 

calculations. The observations of Hsu et al. (1981) also show the overshoot (see their 
figure 14). To enable a comparison with the observed wave stresses, the model results 
in figure 11 have been normalized to yield the same surface value of the wave stress 
as the observations. Our observations, also plotted in figure 11, are not close enough 
to the surface to distinguish between the turbulence parameterizations. This of course 
is a consequence of the fact that the observations are made at a fixed height, and we 
have to keep clear of the crests. 

6. Discussion 
From the observations presented here, it is clear that eddy viscosity closures 

overestimate wave-induced stresses in the outer region. The LRR model does not 
show this deficiency. The observations also indicate that the model underestimates the 
phase shift of the undulating flow in the outer region, and thereby the growth rate of 
the waves. Two possible causes for this discrepancy are (i) an inadequate description 
of the (wave-induced) turbulence close to the surface and (ii) a modulation of the 
aerodynamical surface roughness by wind ripples. 

The modelling of turbulence close to a solid wall is notoriously difficult. In the 
context of a Reynolds stress model, the parameterizations of the pressure-velocity 



Air ,flow over water waves 29 5 

.4 

0.4 

.- 

: I 4 I 

I 
I 

0 
-8 -6 -4 -2 0 

Re[ t]/ukp,u? 

b) 

0.4 

0 ,... 
-4 -2 0 2 

Im[ z]/ukp,u? 

0.4 ~~ 

3 i 
0 
-6 -4 -2 0 2 4 

1.2 

0.8 

0.4 

0 

Re[ u'u']/uku? 

- 5  0 2 10 
Im[ u'u']/uku? 

1.2 

0.8 

0.4 

n 
-4 -2 0 2 4 

Re[ ~ ~ ' w ' ] / u k u ?  

" 
- 2 0  2 4 4  

Im[ w'w']/uku? 

FIGURE 10. As figure 9 for run BA ( U , / c  = 4.6). 

correlation terms ng) and Zi':;) used in the LRR model are not valid close to a solid 
wall. There are also reasons to believe that the dissipation is not isotropic close to a 
surface. For small wave Reynolds numbers these wall effects may interfere with the 
dynamics in the inner region. Harris et al. (1996) made calculations with a model 
that includes low Reynolds number effects. They concluded that these effects become 
important if the wave Reynolds number, based on wavelength and friction velocity, 
is lower than 2 x lo4. In the present experiment the Reynolds number is of the order 
of lo4. Hence the observed increase of the anisotropy of the turbulence towards 
the surface may be related to low-Reynolds number near-wall effects. These effects 
are neglected in the LRR model. Several modifications to the parameterization of 
the pressureevelocity correlation terms and the dissipation term have been proposed, 
to enable the model to reproduce the well-known distributions of the velocity and 
velocity variances above a flat plate (e.g. Hanjalib & Launder 1975 and Durbin 1993). 
However, these methods differ widely and no consensus has been reached on what is 
the best approach. 

An additional complication is that the surface of the paddle wave is not flat, but it 
is covered by wind ripples. In principle it is possible to resolve the air flow over the 
individual ripples, and to consider the water surface as a curved but aerodynamically 
smooth wall. In practice this approach is impossible due to the huge range of scales 
involved: in the vertical ranging from the top of the ISL of the shortest ripple 
to the length of the paddle wave. For this reason the effect of the ripples on the 
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FIGURE 11. The mean wave stress as a function of height kz. According to the mixing length model 
(dash-dotted line) the wave stress decays slightly faster than exp(-2kz) (dotted line). In the LRR 
scheme (solid line) the wave stress decays to zero at the top of the inner region, and shows an 
overshoot with reversed sign at the bottom of the outer region. The wave stress calculated with the 
e-e scheme is indicated with the dashed line. The solid squares indicate observed wave stresses in 
run BA. 

roughness of the surface has to be parameterized, as we have done in this study. 
This means that we no longer consider the surface to be aerodynamically smooth, 
but transitional or rough depending on the ripples present. These ripples will not 
be evenly distributed over the phase of the paddle wave, so the roughness will be 
modulated. Both Gent & Taylor (1976) and Belcher & Hunt (1993) found that a 
varying roughness could affect the growth rate significantiy. We can also use the 
present model to assess the sensitivity to changes in the roughness. Rather than 
modulating the surface roughness itself, we will modulate the drag coefficient. This is 
done to ensure that the variation of the surface roughness itself does not increase the 
momentum flux. The drag coefficient cl is defined as 

This drag coefficient is modulated by 

cI(x’) = cA(1 + aktieikx’), (6.2) 
where x’ = x - ct and ci. is the drag coefficient with respect to the height A. From 
(6.2) the roughness distribution along the wave can be calculated: 

(6.3) 
zo(x’) = 2ne-K/(C”.x f 1 112 . 

In figure 12 the effect on the flow for case 35 is shown. The solid lines represent 
results from a reference calculation where the roughness distribution is uniform, 
for the dashed lines a roughness variation with a (real) amplitude of 2 ~ .  = 4 was 
taken. Clearly the imposed roughness variation is capable of shifting the undulating 
flow downstream, thereby increasing the calculated growth rate from p = 15 for 
the constant roughness case, to p = 35 when t~ = 4. At present no theory exists 
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FIGURE 12. Effect of a varying surface roughness on the velocity and pressure perturbations for 
run 35: solid line, constant roughness = 0 ) ;  dashed line, 2i = 4. 

which allows the calculation of the ripple modulation and the roughness variation it 
causes. 

Though the growth rates calculated with the numerical model underestimate the 
observed values, it is interesting to compare the growth rates calculated with the 
different turbulence schemes with some widely used parameterizations. In figure 13 
a comparison is made between the growth rates obtained with different theories and 
the observations of Snyder et al. (1981). For the parameterization of the observations 
of Snyder we use 

p = I (z)* (Eg - 1 ) ,  
4 24. 

which is the form which was used in earlier versions of the WAM wave model 
(WAMDI 1988). In Snyder et aL’s experiment growth rates were observed by mea- 
suring the out-of-phase component of the pressure for waves with l < Un/c < 4. 

Using the mixing length closure Jacobs (1987) and van Duin & Janssen (1992) 
derived analytically 

= 2 . 5 ~ 5  (% - 1) . 
U* 

This theory is only valid for slow waves with UJ,/C > 3. The trend in p as a function of 
c /u ,  agrees with the numerical simulation using the mixing length closure. However, 
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FIGURE 13. The growth rate parameter p vs. the ratio cfu.. The dimensionless roughness kzo is 
lop4. Full line, growth rate used in WAM Cycle 4 based on Miles (1957); dash-dot-dot-dot, van 
Duin & Janssen (1992) using mixing length; dashed, parameterization of the Snyder et al. (1981) 
experiment; open squares, Belcher & Hunt (1993). The results from numerical simulations are 
dotted with : open triangles, mixing length; solid squares, LRR model. 

compared to the numerical model van Duin & Janssen underestimate the growth 
rate by 30%. According to Jenkins (1992) this is due to a slow convergence of the 
asymptotic expansions used by Jacobs (1987) and van Duin & Janssen (1992). He 
claims kzo has to be as small as for (6.5) to be within 10% of the growth rate 
following from mixing length closure. Wood & Mason (1993) argue that the stress 
variations in the inner region are treated inadequately by Jacobs and van Duin & 
Janssen. 

The growth rate used in the most recent version of the WAM model (Cycle 4) is 
based on a parameterization of the theory of Miles (1957) proposed by Janssen (1991) : 

1.2 
lc2 

P = -p in4 p, 

where p is the dimensionless critical height : 

p = min 1, kzo exp [ (u*/:+ a)] . 
Relative to the parameterization of the growth rate obtained with Miles’ theory (a = 0 
in the above equation), the growth rate used in the WAM model (a  = 0.011) results 
in a considerably larger energy input to the waves with a phase speed comparable 
to the wind speed. Note that Miles’ theory does not yield negative growth rates for 
waves faster than the wind (no critical height) and that the growth of very short 
waves quenches as the critical height goes to zero. 

Also plotted in figure 13 are the growth rates obtained with the analytical theory 
of Belcher & Hunt (1993), kindly provided by the first author. This theory is only 
valid for slow waves with c / u ,  < 10 and if the inner region is thin enough, which 
imposes the condition kzo < The contribution from the shear stress modulation 
at the surface, responsible for a significant part of the energy flux according to the 
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article of Belcher & Hunt (1993), is discarded here. As was the case for the sheltering 
coefficients of hills (see figure 3) the theory of Belcher & Hunt is in excellent agreement 
with the LRR model. 

7. Conclusions 
The comparison of laboratory observations over water waves with numerical sim- 

ulations shows that turbulence closure schemes based on the eddy viscosity concept 
overestimate the modulation of the turbulent shear stress in the outer region. A 
similar overestimation was found by Belcher el al. (1993) in stress profiles observed 
over hills. Eddy viscosity schemes imply that the turbulent eddies are in equilibrium 
with the instantaneous shear at each point in the flow. Physical scaling arguments 
explain that this assumption is violated in the outer region of the flow over waves. 
Numerical simulations with the LRR model, which does not rely on an eddy viscosity, 
show good agreement with the observations of the shear stress modulation in the 
outer region. 

When eddy viscosity closure schemes are used to parameterize turbulence in the 
flow over waves, an additional growth mechanism is introduced that dominates other 
mechanisms (Belcher et al. 1993). Elimination of this erroneous contribution gives 
rise to a different dependence of the growth rate on external parameters like the ratio 
c /u ,  and the surface roughness. Both the growth rate for slow waves (Uj~/c > 2) and 
the decay rate for fast waves ( U J c  < 1.2) are significantly reduced on going from a 
mixing length closure to a Reynolds stress model, whereas the growth rate for waves 
travelling almost as fast as the wind is increased. The growth rates calculated with 
the Reynolds stress model are in excellent agreement with results from the analytical 
model presented in Belcher & Hunt (1 993). 

Three different ratios of the wind speed and phase speed of the paddle wave 
are used in the experiment: U,Jc = 2.8, 4.6 and 5.3. The observed amplitude of 
both the pressure and the velocity perturbations shows excellent agreement with 
the simulations. This is a strong indication that our new experimental procedure, i.e. 
turning off the wave maker before starting the data acquisition to eliminate its spurious 
effect on the pressure observations, does not affect the actual flow of the air over the 
waves. Comparison of the observed phase of the pressure and velocity perturbations 
for the last two cases with numerical simulations reveals that the model underpredicts 
the downwind phase shift of the undulating flow by approximately a factor 4. Since 
this downwind shift induces the out-of-phase pressure on the surface of the wave 
which makes the wave grow, the numerical model underestimates the observed growth 
rate. In the first set of observations, with the lowest wind speed/phase speed ratio, the 
large scatter prevents detailed conclusions. Among the possible explanations of the 
underestimation of the growth rate for slow waves are an inadequate parameterization 
of the turbulence in the inner region and a roughness modulation of the paddle wave 
surface by wind ripples. It is suggested that the dissipation and pressure-correlation 
terms in the Reynolds stress be modified analogously to suggestions made for flow 
over flat plates. The role of the roughness modulation by ripples also needs further 
investigation. 
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Appendix. Description of the second-order LRR model 

and needs no parameterization: 
The functional dependence of the production term follows from the basic equations 

(note that P = iP i i ) .  The turbulent transport of the Reynolds stresses is parameterized 
as 

The pressure-velocity correlation terms are thought to relax the stresses towards 
isotropy, and to reduce the effectiveness of the production. For the first part of the 
pressure-velocity correlation term, L’t), the Rotta hypothesis is used: 

where bij is the stress-anisotropy tensor defined as 

The second part of I I i j  is called the rapid term, and it is parameterized as: 

(A 5) 
where Rij is the mean vorticity tensor: 

The dissipation is given by 
(A 7) 6 . .  - 2J . f .  

The isotropic dissipation rate E is calculated with the same dynamical equation as in 
the e-e scheme, i.e. equation (3.10). The only difference is the parameterization of the 
turbulent transport term: in order to eliminate the eddy viscosity completely from 
the second-order model, equation (3.13) is replaced by 

V - 3 ‘ J  

The LRR scheme needs six constants. Again we use the standard values for these 
parameters in this study (Launder et al. 1975): cl6 =1.44, ~2~ = 1.92, c, = 0.11, c1 = 
1.5, c2 = 0.4 and c, = 0.267. 
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